

Group B16

Yiwei Lu | Ziqi Zhang | Zaiheng Shen | Wan-Lun Tsai | Chia-Chien Chang

World Obesity Atlas 2022

RESOURCES RESOURCE LIBRARY WORLD OBESITY ATLAS 2022

= IN THIS SECTION

One Billion People Globally Estimated to be Living with Obesity by 2030

Call for Global Action Plan on Obesity at World Health Assembly in May 2022

■ The World Obesity Atlas 2022, published by the World Obesity Federation, predicts that one billion people globally, including 1 in 5 women and 1 in 7 men, will be living with obesity by 2030. **Underweight: BMI < 18.5**

Normal weight: $18.5 \le BMI \le 24.9$

Overweight: BMI between 25.0 and 29.9

Overweight_Level_I: 25.0 ≤ BMI ≤ 27.4

Overweight_Level_II: 27.5 ≤ BMI ≤ 29.9

Obesity: BMI between 30 and 40+

• Obesity Type I: 30.0 ≤ BMI ≤ 34.9

• Obesity Type II: 35.0 ≤ BMI ≤ 39.9

• Obesity Type III: BMI ≥ 40

KEY QUESTION

- 1. Obesity Risk Prediction
- 2. Key Factors of Obesity
- 3. Impact of Habits on Obesity
- 4. Genetics and Family Influence

AGENDA

1. Exploratory Data Analysis

2. Data Engineering

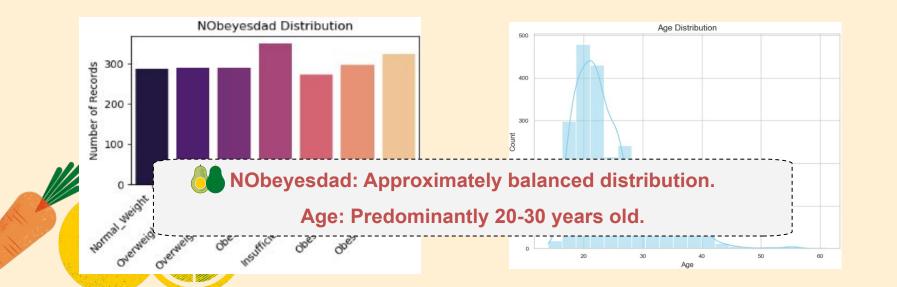
- Decision Tree and Random Forest
- KNN
- Linear Regression

3. Conclusion

Exploratory DataAnalysis

Data Understanding

Dataset: UCI Machine Learning Repository


Data Shape: (2111, 17)

Target Variable: NObeyesdad

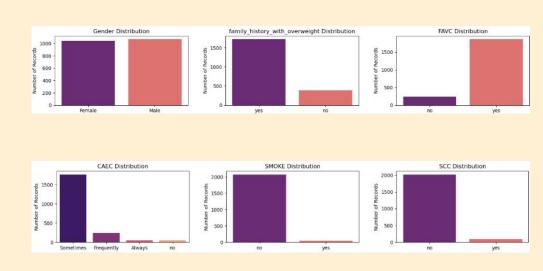
Missing Values: 0

Duplicated: 24

Outliers: (Age 168, NCP 579)

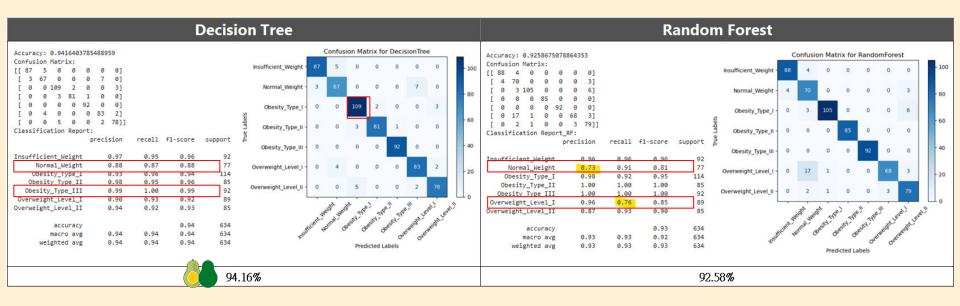
Data Understanding

Attributes Related to Physical Condition	
SCC: Calories consumption monitoring	categorical
MTRANS: Transportation used	categorical
FAF: Physical activity frequency	numerical
TUE: Time using technology devices	numerical


Attributes Related to Eating Habits	
FAVC: Frequent consumption of high caloric food	categorical
CAEC: Consumption of food between meals	categorical
CALC: Consumption of alcohol	categorical
FCVC: Frequency of consumption of vegetables	numerical
NCP: Number of main meals	numerical
CH20: Consumption of water daily	numerical

Correlation b/w Numerical Variables

Categorical Variables Distribution


- 1. The correlation between CH2O and NCP is slightly higher (about 0.24)
- 2. FCVC(0.07 | vegetables consumption) and FAF(0.17 | physical activity) have high correction with CH2O
- 3. There are 1,726 people who have a family history of being overweight.
- 4. 2,067 people are non-smokers, while 44 people smoke

Data Engineering

Obesity Risk Prediction

Model Performance Comparison

Obesity_Type_III: 99% accuracy
Normal Weight: 88% accuracy (slightly higher error).

All categories have F1-scores **close to or above 90%**, indicating well-balanced performance.

Obesity_Type_II, Obesity_Type_III: 100% accuracy.

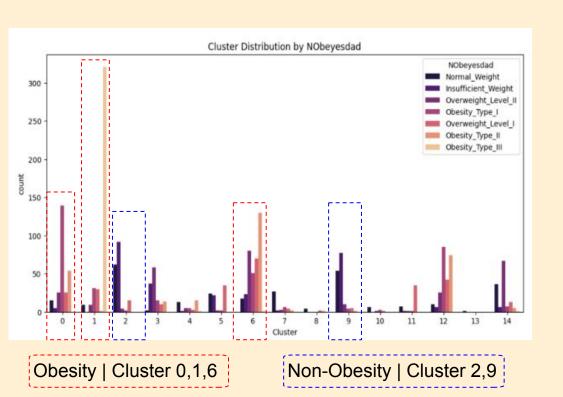
Normal_Weight: **73% accuracy** (some mispredictions); **91%recall**Overweight Level I: **96% accuracy**; **76% recall** (some misclassified)

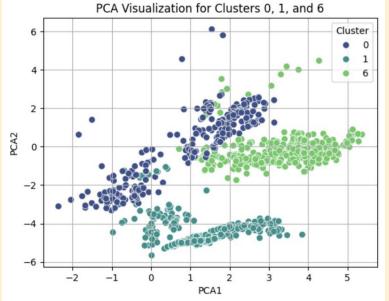
All categories have F1-scores **above 80%**, reflecting strong performance across most categories.

Obesity Risk Prediction

Model Performance Comparison

Decision Tree Accuracy: 94.16% | Random Forest Accuracy: 92.59%


Both models show overfitting.



Random Forest is more stable compared to the Decision Tree.

Key Factors Influencing

(KNN Algorithm – 15 Clusters Analysis)

Obesity

Common variables: ['Height', 'Weight', 'TUE', 'MTRANS_Walking', 'NCP', 'MTRANS_Public_Transportation', 'FCVC', 'Age', 'CH2O']

The key differences:

Cluster 0 (Obesity Type I | 60%)

■Gender, No alcohol (CALC_no) and Frequent alcohol consumption (CALC_Frequently).

Cluster 1 (Obesity Type III | 90%)

■Physical activity (FAF) BUT Drinking (CALC_Sometimes, frequently) habits influence severe obesity.

Cluster 6 (Obesity Type II | 44%)

■ High physical activity (FAF) BUT frequent snack intake (CAEC Frequently, CAEC Sometimes)

Non-Obesity

Common variables: ['Height', 'Weight', 'TUE', 'CALC_Frequently', 'MTRANS_Walking', 'NCP', 'MTRANS Public Transportation', 'FCVC', 'Age', 'CH2O"]

The key differences:

Cluster 2 (normal/underweight | 88%)

■No alcohol consumption (**CALC_no**) contributes to lower caloric intake.

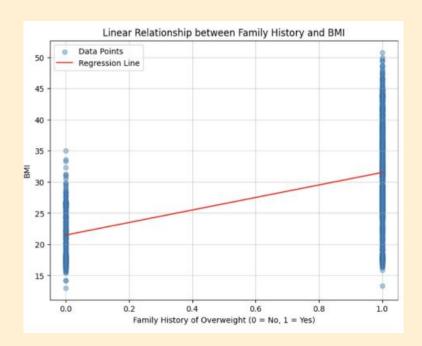
Cluster 9 (normal/underweight | 86%)

■ High physical activity (FAF) and occasional alcohol (CALC_Sometimes) maintain balance.

These factors key factor cause Obesity is:

CALC_Sometimes, frequently; CAEC_Frequently, CAEC_Sometimes

Family History and Obesity


(Linear Regression Analysis)

P-Value: 0.000 (P < 0.05), indicating a statistically significant relationship.

Shows a positive linear relationship between family history and BMI.

Individuals with a family history of overweight tend to have higher BMI.

Random Forest 92.59% Accuracy

Eating Habit

Frequent snack intake: CAEC_Frequently, CAEC_Sometimes

Alcohol consumption: CALC_Sometimes, frequently;

Physical Activity(FAF)

Regular exercise and meal patterns are crucial for maintaining a healthy weight.

Genetics

Family history has a significant impact on BMI.

Active lifestyles and avoiding alcohol support lower weight. Irregular eating and frequent snacking contribute to obesity.

THANK YOU!